This is a knowledge base on chemical synthesis using laboratory microwave reactors.

Microwave Synthesis Publications

Here is a list of interesting and relevant scientific publications on microwave synthesis of the last decade.

Gaseous reagents

“The effect of pressure on microwave-enhanced Diels-Alder Reactions. A case study.”, N. Kaval et al., Org. Biomol. Chem. 2004, 2, 154-156.

“Alkoxycarbonylation of aryl iodides using gaseous carbon monoxide and pre-pressurized reaction vessels in conjunction with microwave heating”, C. M. Kormos, N. E. Leadbeater, Org. Biomol. Chem. 2007, 5, 65-68.


High-throughput applications

“Parallel microwave synthesis of 2-styryl-quinazolin-4(3H)-ones in a high-throughput platform using HPLC/GC Vials as reaction vessels”, M. Baghbanzadeh et al., J. Comb. Chem. 2009, 11, 676-684.

“Microwave-assisted high-throughput derivatization techniques utilizing silicon carbide microtiter platforms”, M. Damm et al., J. Chromat. A 2010, 1217,167-170.

“Microwave-assisted high-throughput acid hydrolysis in silicon carbide microtiter platforms - A rapid and low volume sample preparation technique for total amino acid analysis in proteins and peptides”, M. Damm et al., J. Chromat. A 2010, 1217, 7826-7832.

“A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions”, M. Damm, C. O. Kappe, Anal. Chim. Acta. 2011, 707, 76-83.


Investigation of microwave effects

“Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects”, D. Obermayer, B. Gutmann, C. O. Kappe, Angew. Chem. Int. Ed. 2009, 48, 8321-8324.

“On the importance of simultaneous infrared/fiber optic temperature monitoring in the microwave-assisted synthesis of ionic liquids”, D. Obermayer, C. O. Kappe, Org. Biomol. Chem. 2010, 8, 114-121.

“Activation and deactivation of a chemical transformation by an electromagnetic field – evidence for specific microwave effects in the formation of Grignard reagents”, B. Gutmann et al., Angew. Chem. Int. Ed. 2011, 50, 7636-7640.

“Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures”, W. Chen, B. Gutmann, C. O. Kappe, Chem. Open 2012, 1, 39-48.


Library generation

“5-Aroyl-3,4-dihydropyrimidin-2-one library generation via automated sequential and parallel microwave-assisted synthesis techniques”, L. Pisani et al., J. Comb. Chem. 2007, 9, 415-421.

“Microwave-assisted parallel synthesis of fused heterocycles in a novel parallel multimode reactor”, M. Treu et al., J. Comb. Chem. 2008, 10, 863-868.

“Use of a silicon carbide multi-well plate in conjunction with microwave heating for rapid ligand synthesis, formation of palladium complexes, and catalyst screening in a Suzuki coupling”, K. B. Avery et al., Tetrahedron Lett. 2009, 50, 2851-2853.

“Assessment and use of two silicon carbide multi-well plates for library synthesis and proteolytic digests using microwave heating”, L. M. Stencel et al., Org. Biomol. Chem., 2009, 7, 2452-2457.



“Effect of salinity, temperature, water content, and pH on the MW demulsification of crude oil emulsion”, M. Fortuny et al., Energy Fuels 2007, 21, 1358-1364.

“Thermal effect on the microwave-assisted biodiesel synthesis catalyzed by lipases”, I. C. R. Costa et al., J. Braz. Chem. Sic. 2011, 22, 1993-1998.

“Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel”, P. D. Patil et al., Green Chem. 2012, 14, 809-818.


 “Environmentally benign synthesis of nanosized aluminophosphate enhanced by microwave heating”, E.-P. Ng, L. Delmotte, S. Mintova, Green Chem. 2008, 10, 1043-1048.

“Investigation of primary crystallize sizes in nanocrystalline ZnS powders: comparison of MW-assisted with conventional synthesis routes”, T. Rath et al., Inorg. Chem. 2008, 47, 3014-3022.

“Comparison of microwave-assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries”, A. V. Murugan et al., J. Phys. Chem. C 2008, 112, 14665-14671.

“Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries”, A. V. Murugan et al., J. Mater. Chem. 2008, 18, 5661-5668.

“Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage”, A. V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 2009, 21, 5004-5006.

“Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high-performance anode in lithium ion batteries”, T. Muraliganth, A. V. Murugan, A. Manthiram, Chem. Commun. 2009, 45, 7360-7362.

“Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated Wox-MoO2 nanorod anodes for lithium ion batteries”, S. Yoon, A. Manthiram, J. Mater. Chem. 2011, 17, 4082-4085.

“Investigation of the formation of CuInS2 nanoparticles by the oleylamine route: comparison of microwave-assisted and conventional syntheses”, A. Pein et al., Inorg. Chem. 2011, 50, 193-200.


Near-critical water chemistry

“Microwave-assisted organic synthesis in near-critical water at 300 °C – A proof-of-concept study“, J. M. Kremsner, C .O. Kappe, Eur. J. Org. Chem. 2005, 70, 3672-3679.

“Direct conversation of aryl halides to phenols using high-temperature or near-critical water and microwave heating“, C. M. Kormos, N. E. Leadbeater, Tetrahedron 2006, 62, 4728-4732.

“Microwave-assisted catalyst-free transesterification of triglycerides with 1-butanol under supercritical conditions”, J. Geuens et al., Energy Fuels 2008, 22, 643-645.

“Fate of monoterpenes in near-critical water and supercritical alcohols assisted by microwave irradiation”, T. Szuppa, A. Stolle, B. Ondruschka, Org. Biomol. Chem. 2010, 8, 1560-1567.

“Microwave-assisted hydrothermal degradation of fructose and glucose in subcritical water”, M. Möller, F. Harnisch, U. Schröder, Biomass Bioenergy 2012, 36, 389-398.



“Kinetic advantages of using microwaves in the emulsion polymerization of MMA”, C. Costa et al., Mater. Sci. Eng. C 2009, 29, 415- 419.

“Microwave-assisted nitroxide-mediated polymerization for water soluble homopolymers and block copolymers synthesis in aqueous solution”, J. Rigolini et al., J. Polymer. Sci. 2010, 48, 5775-5782.

“Enhanced selectivity for the hydrolysis of block copol(2-oxazoline)s in ethanol-water resulting in linear poly(ethylene imine) copolymers”, H. P. C. van Kuringen et al., Macromol. Rapid Commun. 2012, 33, 389-398.



“Parallel microwave chemistry in silicon carbide microtiter platforms: a review”, M. Damm, C. O. Kappe, Mol. Divers 2012, 16, 5-25.

“One decade of microwave-assisted polymerizations: Quo vadis?”, C. Ebner, D. Bodner, F. Stelzer, F. Wiesbrock, Macromol. Rapid Commun. 2011, 254-288.

“A Comparison of Commercial Microwave Reactors for Scale-Up within Process Chemistry”, J. D. Moseley, et al. Org. Process Res. Dev. 2008, 30-40.

 “Controlled Microwave Heating in Modern Organic Synthesis”, C. O. Kappe, Angew. Chem. Int. Ed. 2004, 43, 6250–6284.

“Microwave assisted organic synthesis - a review”, P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron 2001, 57, 9225-9283.



“Scalability of microwave-assisted organic synthesis. From single-mode to multimode parallel batch reactors.”, A. Stadler et al., Org. Process Res. Dev. 2003, 7, 707-716.

“A comparison of commercial microwave reactors for scale-up within process chemistry”, J. D. Moseley et al., Org. Process Res. Dev. 2008, 12, 30-40.

“Scaling-up the synthesis of 1-butyl-3-methylimidazolium chloride under microwave irradiation”, T. Erdmenger et al., Aust. J. Chem. 2008, 197-203.

“Scale-up of organic reactions in a pharmaceutical kilolab using a commercial microwave reactor”, H. Lehmann, L. LaVecchia, Org. Process Res. Dev. 2010, 14, 650-656.

“Scale-up of microwave-assisted reactions in a multimode bench-top reactor”, D. Dallinger et al., Org. Process Res. Dev. 2011, 15, 841-854.


Various organic transformations

“Silicon carbide passive heating elements in microwave-assisted organic synthesis“, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2006, 71, 4651-4658.

“Simple and efficient MW-assisted cleavage of acetals and ketals in pure water”, A. Procopio et al., Tetrahedron Lett. 2007, 48, 8623-8627.

“TBCA mediated microwave-assisted Hofmann rearrangement”, L. S. M. Miranda et al., Tetrahedron Lett. 2011, 52, 1639-1640.

“Comparison of monomode and multimode microwave equipment in Suzuki-Miyaura reactions. en route to high-throughput parallel synthesis under microwave conditions”, U. Schön et al., Tetrahedron Lett. 2008, 49, 3204-3207.

“Catalytic dehydrative etherification and chlorination of benzyl alcohols in ionic liquids”, H. A. Kalviri, C. F. Petten, F. M. Kerton, Chem. Commun. 2009, 45, 5171-5173.

“Microwave-assisted Kolbe-Schmitt synthesis using ionic liquids or Dimcarb as reactive solvents”, A. Stark et al., Chem. Eng. Technol. 2009, 32, 1730-1738.

“Rapid nickel-catalyzed Suzuki-Miyaura cross-couplings of aryl carbamates and sulfamates utilizing microwave heating”, M. Baghbanzadeh, C. Pilger, C.O. Kappe, J. Org. Chem. 2011, 76, 1507-1510.